Rituximab Maintenance for the Treatment of Patients With Follicular Lymphoma: An Updated Systematic Review and Meta-analysis of Randomized Trials

Liat Vidal, Anat Gafter-Gvili, Gilles Salles, Martin H. Dreyling, Michele Ghielmini, Shu-Fang Hu Schmitz, Ruth Pettengell, Mathias Witzenz-Harig, Ofer Shpilberg

Follicular lymphoma is a “slow growing” B-cell lymphoma. The median age at diagnosis is 63 years (1). Most patients are diagnosed with advanced stage (Ann Arbor stage III or IV) (2) and are followed without chemotherapy until fever, weight loss or night sweats (B symptoms), or signs of high tumor bulk occur, or the lymphoma jeopardizes an organ function (known as the Groupe d’Etude des Lymphomes Folliculaires [GELF] criteria) (3,4). Patients respond well to the initial (first-line) rituximab–chemotherapy induction but typically experience repeated relapses and shortening of the time from treatment to treatment (4). Survival of patients with follicular lymphoma is shorter compared with a matched cohort from the general population, with a median survival of approximately 10 years (95% confidence interval [CI] = 8 to 12 years) (1,5).

Addition of rituximab to induction chemotherapy (rituximab–chemotherapy induction) improves survival of patients with follicular lymphoma compared with induction chemotherapy, but most patients are not cured and experience relapse after a median of 4 years (95% CI = 3.17 to not reached) (6–8). Rituximab maintenance treatment after any induction therapy improves progression-free survival, but evidence of improved overall survival is lacking from randomized controlled trials (9,10). To evaluate the effect of rituximab maintenance treatment on the overall survival of patients with follicular lymphoma, previously we performed a systematic review and meta-analysis (11) of five randomized controlled trials conducted between the years 1998 and 2004 in which 985 follicular lymphoma patients were randomly assigned to rituximab maintenance treatment or to no maintenance (observation or rituximab at progression). Induction therapy consisted of rituximab or chemotherapy or a combination of rituximab and chemotherapy. Results demonstrated a statistically significant survival benefit for patients with refractory or relapsed (ie, previously treated) follicular lymphoma who received rituximab maintenance treatment (pooled hazard ratio [HR] of death = 0.58, 95% CI = 0.42 to 0.79) but not for patients after first-line induction therapy (pooled HR of death = 0.68, 95% CI = 0.37 to 1.25). Since our previous publication (11), the trials included in the systematic review and meta-analysis have published updated results, and in addition, new clinical trials have been completed. In this study, we report an updated systematic review and meta-analysis integrating these new results.

The Cochrane Collaboration policy requires all systematic reviews to be updated within 2 years (12). Because the literature search for this review was done in June 2007, we decided to update it in December 2010. A search for randomized controlled trials was performed as described previously (11). We searched The Cochrane Central Register of Controlled Trials, published in The Cochrane Library (issue 4, 2010); PubMed (1966 to December 2010); EMBASE (1974 to June 2007); LILACS (1982 to December 2010); the database of clinical trials in hematologic malignancies (www.hematology-studies.org); Conference Proceedings of the American Society of Hematology (1995 to 2010), Conference Proceedings of the American Society of Clinical Oncology Annual Meeting (1995 to 2010), and Proceedings of the European Hematology Association; and databases of ongoing and unpublished trials (http://www.controlled-trials.com/, http://www.clinicaltrials.gov/ct, http://clinicaltrials.ncl.nih.gov/). The
Prior knowledge

Most follicular lymphoma patients respond to induction chemotherapy but experience repeated relapses. A previously conducted systematic review and meta-analysis of five randomized controlled trials that compared rituximab maintenance treatment with no maintenance showed survival benefit for patients with refractory or relapsed (previously treated) follicular lymphoma who received rituximab maintenance, but not untreated patients.

Study design

An updated systematic review and meta-analysis was conducted by including nine randomized trials, and patients treated with rituximab maintenance were compared with no maintenance group.

Contribution

Patients treated with rituximab maintenance showed statistically significantly better overall and progression-free survival compared with patients in the no maintenance group. Subgroup analysis of overall survival showed that patients with refractory or relapsed follicular lymphoma had a clear survival benefit with rituximab maintenance treatment, but previously untreated patients did not have a statistically significant survival benefit. A higher rate of infection-related adverse events was noted in the rituximab maintenance group.

Implications

The updated meta-analysis confirms the results of the former meta-analysis. Rituximab maintenance improves survival in previously treated patients, and although untreated patients show progression-free survival benefit, they do not show overall survival benefit. The higher rate of infection-related adverse events in the rituximab maintenance group needs to be considered while treating the patients.

Limitations

An increased chance of false-positive results is possible because of repeated meta-analysis.

From the Editors

terms “follicular” or “indolent” and similar terms, and “lymphoma” and similar terms were cross-searched with “rituximab” or “monoclonal antibodies” and similar terms. We contacted the first or corresponding author of each included trial to obtain complementary information or information on unpublished trials. The primary outcome was overall survival. Secondary outcomes included progression-free survival [as defined in Cheson et al. (13)], quality of life, and adverse events: grade 3 or 4 adverse events (according to the US National Cancer Institute’s Common Terminology Criteria for Adverse Events, CTCAE, version 3). If the trials used the term grade but did not define the grading system, we assumed grading was defined according to CTCAE, adverse events requiring discontinuation of therapy, infections, and severe infections (as defined in each trial). In our previous protocol designed in 2007, we also planned to analyze event-free survival, rate of disappearance of B-cell CLL/lymphoma 2 (BCL2) protein from biopsy specimen, and response duration. We amended the protocol and did not include these outcome measures in the current meta-analysis.

Subgroup analyses for the primary outcome were planned according to the type of induction therapy (chemotherapy only, rituximab only, rituximab combined with chemotherapy, any regimen containing rituximab), rituximab schedule, treatment line, blinding of patients, caregivers, or outcome assessors, and adequacy of allocation concealment and adequacy of sequence generation. All subgroup analyses of progression-free survival (by type of induction therapy, type of chemotherapy, treatment line) were not planned a priori in the protocol.

Hazard ratios and 95% confidence intervals for time-to-event outcomes were estimated (14,15) and pooled using inverse variance method in a fixed effect model. A hazard ratio less than 1.0 was in favor of rituximab maintenance treatment. Risk ratios (RRs) and 95% confidence intervals for dichotomous data were estimated and pooled using a fixed effect model (the Mantel–Haenszel method) (16). For the primary outcome, we performed a sensitivity analysis by repeating the analysis using a random effects model [the DerSimonian and Laird method; (17)]. We assessed heterogeneity of trial results by the χ^2 test of heterogeneity and the I^2 statistic of inconsistency. Statistically significant heterogeneity was defined as P less than .1 or an I^2 statistic greater than 50% (18). All statistical tests were done by Review Manager (RevMan) version 5.1 (Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration, 2011) and were two-sided.

The literature search identified 873 references, of which 64 references were considered potentially relevant (8–10,19–79), and 50 references were excluded (19–68). Ten trials fulfilled inclusion criteria (8–10,69–79), including five new trials (69,73,76–78) and three updated data of trials (71,72,75) included in our previous report (11). One trial did not report relevant clinical data (78). Two of the publications (71,79) reported the outcomes of different subsets of patients from the same trial.

The trial and patient characteristics are shown in Tables 1 and 2. Patients were eligible for trial entry if they had at least partial response (8,10,73–76) or at least stable disease (9,69–72,79) after induction therapy. In one trial (70), patients in the no maintenance group were eligible for rituximab upon progression of follicular lymphoma; in other trials, patients in the control group were observed without rituximab treatment.

Patients included in one trial (69) fulfilled GELF criteria for deferred treatment (3). In the original trial (69), patients were randomly assigned to one of three groups—observation, rituximab induction, or rituximab induction and maintenance. To avoid overestimation of the effect of rituximab maintenance, we chose to compare patients who received rituximab induction and maintenance with those who received rituximab induction only and not with those in the observation group. Thus, in this meta-analysis, patients who received only rituximab induction and no maintenance were used as the control group.

Nine trials performed between 1998 and 2009 (2586 patients) were eligible for the meta-analysis of overall survival (8–10,69–77,79). Patients treated with rituximab maintenance had statistically significantly better overall survival compared with patients in the no maintenance group (pooled HR of death = 0.76, 95% CI = 0.62 to 0.92) (Figure 1). No statistically significant heterogeneity among the trials was observed for overall survival ($P_{\text{heterogeneity}} = .0$). The funnel plot of the pri-
mary outcome did not support a publica-

tion bias (data not shown).

A subgroup analysis of overall survival

showed that patients with refractory or

relapsed (ie, previously treated) follicular

lymphoma (909 patients) (9,10,70,72–75)

had a clear survival benefit with rituximab

maintenance treatment (pooled HR of
death = 0.72, 95% CI = 0.57 to 0.91),

whereas previously untreated patients

(maintenance after first-line induction

therapy) (1650 patients) (8,9,69,71,72,79)

did not (pooled HR of death = 0.86, 95%

CI = 0.60 to 1.25) (Figure 1, and

Supplementary Table 1, available online).

Chemotherapy regimen and the schedule

of rituximab maintenance had no statisti-
cally significant effect on outcome

(Supplementary Table 1, available online).

Three trials included patients whose induc-
tion therapy consisted of single-agent

rituximab with no chemotherapy

(9,69,70,72). Analysis of these trials (516

patients) showed that rituximab mainte-
nance treatment had no statistically signifi-
cant effect on overall survival compared

with no maintenance therapy (pooled HR

of death = 0.76, 95% CI = 0.53 to 1.01).

The sensitivity analysis by quality of alloca-
tion concealment (adequate or not

reported) did not show an effect of quality

of concealment on the outcomes

(Supplementary Table 1, available online).

In most of the included trials, progression-
free survival improved with rituximab

maintenance treatment compared with no

maintenance (8–10,69–76). The pooled haz-

ard ratios from nine trials (2550 patients)

(8,10,69–73,75,76,79) showed a statistically

significantly improved progression-free

survival (pooled HR of disease progression

or death = 0.54, 95% CI = 0.48 to 0.60).

This effect was consistent both in previ-

ously untreated patients (1650 patients)

(8–10,69,71,79) (pooled HR of disease

progression or death = 0.52, 95% CI = 0.44 to

0.61) and in those with refractory or

relapsed disease (9,10,70,72). This effect was

consistent both in previous maintenance

treatment and in patients who had not

received prior maintenance treatment

(9,69,70,72). Analysis of these trials (516

patients) showed that rituximab mainte-
nance treatment had no statistically signifi-
cant effect on overall survival (pooled HR

of death = 0.76, 95% CI = 0.53 to 1.01).

The sensitivity analysis by quality of alloca-
tion concealment (adequate or not

reported) did not show an effect of quality

of concealment on the outcomes

(Supplementary Table 1, available online).

The Table 1. Characteristics of included trials*

<table>
<thead>
<tr>
<th>Author, year (reference)</th>
<th>No. of randomly assigned patients</th>
<th>No. of patients included in meta-analysis</th>
<th>Quality of allocation concealment†</th>
<th>Quality of sequence generation‡</th>
<th>No. of dropouts (%)</th>
<th>Median follow-up, mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardesha 2010 (69)</td>
<td>462</td>
<td>276</td>
<td>NR</td>
<td>NR</td>
<td>0 (0)</td>
<td>NR</td>
</tr>
<tr>
<td>Forstpointner 2006 (10)</td>
<td>195§</td>
<td>105§</td>
<td>Adequate</td>
<td>Adequate</td>
<td>19 (10)</td>
<td>26</td>
</tr>
<tr>
<td>Hainsworth 2005 (70)</td>
<td>90</td>
<td>90</td>
<td>Adequate</td>
<td>Adequate</td>
<td>0 (0)</td>
<td>41</td>
</tr>
<tr>
<td>Hochster 2007 (78); Hochster 2009 (71)</td>
<td>313 (ICP cohort); 69 (FC cohort)</td>
<td>228 (ICP cohort); 69 (FC cohort)</td>
<td>NR</td>
<td>NR</td>
<td>2 (1)</td>
<td>48</td>
</tr>
<tr>
<td>Martinelli 2010 (9,72)</td>
<td>151</td>
<td>151</td>
<td>Adequate</td>
<td>Adequate</td>
<td>0 (0)</td>
<td>114</td>
</tr>
<tr>
<td>Pettengell 2010 (73)</td>
<td>280</td>
<td>280</td>
<td>NR</td>
<td>NR</td>
<td>0 (0)</td>
<td>76.8</td>
</tr>
<tr>
<td>Salles 2010 (65)</td>
<td>1018</td>
<td>1018</td>
<td>Adequate</td>
<td>Adequate</td>
<td>0 (0)</td>
<td>36</td>
</tr>
<tr>
<td>van Oers 2010 (74,75)</td>
<td>334</td>
<td>334</td>
<td>NR</td>
<td>NR</td>
<td>0 (0)</td>
<td>84</td>
</tr>
<tr>
<td>Witens-Harig 2009 (76,77)</td>
<td>171</td>
<td>35§</td>
<td>Adequate</td>
<td>Adequate</td>
<td>8 (5)</td>
<td>28</td>
</tr>
</tbody>
</table>

* CVP = cyclophosphamide, vincristine, prednisone; FC = fludarabine, cyclophosphamide; NR = not reported.
† Adequate allocation concealment secures strict implementation of an allocation sequence without foreknowledge of intervention assignments (as central randomization, opaque, and sealed envelopes).
‡ Adequate sequence (of randomization) is generated by the use of a random component (as random number table, computer random number generator, coin tossing, minimization).
§ Of 195 randomly assigned patients, 19 were lost to follow-up. Of the 176 analyzed patients, 105 had follicular lymphoma.
ǁ Separate analysis was possible for patients with follicular lymphoma.
¶ Patients in one trial (71,79) were randomly assigned to CF and CVP and to rituximab maintenance or no maintenance in a second randomization. The CF treatment was closed early. The outcomes of maintenance in these two groups are reported separately for each cohort.
Of the 313 randomly assigned patients, there were 228 available patients with follicular lymphoma.
Table 2. Characteristics of patients included in the meta-analysis and their treatment*

<table>
<thead>
<tr>
<th>Author, year (reference)</th>
<th>Grade of lymphoma</th>
<th>Additional inclusion criteria and eligibility for induction</th>
<th>Treatment line</th>
<th>Induction therapy</th>
<th>Minimum response to induction</th>
<th>Rituximab maintenance protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ardeshna, 2010 (69)</td>
<td>1–3A†</td>
<td>Asymptomatic, advanced-stage, low tumor burden (GELF criteria), randomized to observation, or induction, or induction and maintenance</td>
<td>Untreated FL</td>
<td>Rituximab</td>
<td>Stable disease</td>
<td>A single infusion every 2 mo for 2 y</td>
</tr>
<tr>
<td>Forstpointner, 2006 (10)</td>
<td>1–3†</td>
<td>No additional</td>
<td>Relapsed FL (previously treated) FL, MCL†</td>
<td>FCM or FCM with rituximab</td>
<td>PR</td>
<td>Weekly for 4 wk at 3 mo or 9 mo</td>
</tr>
<tr>
<td>Hainsworth, 2005 (70)</td>
<td>1–2†</td>
<td>Progressive lymphoma, any stage</td>
<td>Relapsed FL, SLL†</td>
<td>Rituximab</td>
<td>Stable disease</td>
<td>Weekly for 4 wk every 6 mo for 2 y</td>
</tr>
<tr>
<td>Hochster, 2007 (79);</td>
<td>1–2†</td>
<td>Advanced stage</td>
<td>Relapsed FL, SLL†</td>
<td>CVP, FC</td>
<td>Stable disease</td>
<td>Weekly for 4 wk every 6 mo for 2 y</td>
</tr>
<tr>
<td>Hochster, 2009 (71)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Martinelli, 2010 (8,72)</td>
<td>1–3 REAL</td>
<td>Any stage (84% advanced)</td>
<td>Untreated and relapsed FL</td>
<td>Rituximab (no previous rituximab)</td>
<td>Stable disease</td>
<td>A single infusion every 2 mo for four doses</td>
</tr>
<tr>
<td>Pettengell, 2010 (73)</td>
<td>1–3A†</td>
<td>No additional</td>
<td>Relapsed FL</td>
<td>Standard induction</td>
<td>PR</td>
<td>A single infusion every 3 mo for 2 y</td>
</tr>
<tr>
<td>Salies, 2010 (65)</td>
<td>1–3A†</td>
<td>High tumor burden according (not fulfilling GELF criteria)</td>
<td>Untreated FL</td>
<td>Rituximab with CHOP or CVP or FCM</td>
<td>PR</td>
<td>A single infusion every 2 mo for 2 y</td>
</tr>
<tr>
<td>van Oers, 2010 (74,75)</td>
<td>1–3A†</td>
<td>No additional</td>
<td>Relapsed FL</td>
<td>CHOP with rituximab or CHOP</td>
<td>PR</td>
<td>A single infusion every 3 mo for 2 y</td>
</tr>
<tr>
<td>Witzens-Harig, 2009 (76,77)</td>
<td>1–3A†</td>
<td>No additional</td>
<td>Untreated and relapsed CD20-positive B-cell non-Hodgkin lymphoma†</td>
<td>PR</td>
<td>A single infusion every 3 mo for 2 y</td>
<td></td>
</tr>
</tbody>
</table>

* ASCT = autologous stem cell transplantation; BEAM = BCNU, etoposide, cytarabine, melphalan; CHOP = cyclophosphamide, doxorubicin, vincristine, prednisone; CVP = cyclophosphamide, vincristine, prednisone; FC = fludarabine, cyclophosphamide; FCM = fludarabine, cyclophosphamide, mitoxantrone; FL = follicular lymphoma; GELF = the Groupe d'Etudes Lymphomes Folliculaires; MCL = mantle cell lymphoma; mo = months; PR = partial response; SLL = small lymphocytic lymphoma; wk = weeks; y = years.
† Grades according to the World Health Organization classification of neoplastic diseases of the hematopoietic and lymphoid tissues.
‡ Separate analysis was possible for patients with follicular lymphoma.
§ Grades according to the Revised European American Lymphoma (REAL) classification.

In two trials, the quality of life was assessed and censored at the time of progression (8,77). As shown at the time of progression, rituximab maintenance treatment was associated with a higher rate of grade 3 or 4 adverse events compared with the no maintenance group (pooled RR = 1.60, 95% CI = 1.29 to 1.99). A higher rate of infections compared with the no maintenance group was also associated with rituximab maintenance treatment (pooled RR = 1.67, 95% CI = 1.30 to 2.10). In two trials, the quality of life was assessed and censored at the time of progression (8,77). As shown at the time of progression, rituximab maintenance treatment was associated with a higher rate of grade 3 or 4 adverse events compared with the no maintenance group (pooled RR = 1.60, 95% CI = 1.29 to 1.99). A higher rate of infections compared with the no maintenance group was also associated with rituximab maintenance treatment (pooled RR = 1.67, 95% CI = 1.30 to 2.10).
Figure 1. Pooled hazard ratios (HRs) of overall survival of patients with follicular lymphoma after first induction and refractory or relapsed disease. Nine trials were included in meta-analysis; no death occurred in one trial (76), and it did not contribute to the pooled analysis. Black squares represent the point estimate (HR), their sizes represent their weight in the pooled analysis, and the horizontal bars represent the 95% confidence intervals (CIs), unidirectional arrows represent a limit of the CI that is higher than 10, and the center of the black diamonds represent the pooled point estimate, and their horizontal axis represents the pooled 95% CI. The black diamond at the bottom represents the pooled point estimate. MR = maintenance therapy with rituximab. SE = standard error.

<table>
<thead>
<tr>
<th>Study or Subgroup</th>
<th>log[HR]</th>
<th>SE</th>
<th>Weight</th>
<th>HR (95% CI)</th>
<th>HR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maintenance in first remission</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ardesnha 2010</td>
<td>0.19</td>
<td>0.61</td>
<td>2.7%</td>
<td>1.21 (0.37 to 4.00)</td>
<td></td>
</tr>
<tr>
<td>Hochster 2007</td>
<td>1.50</td>
<td>1.15</td>
<td>0.8%</td>
<td>4.51 (0.47 to 43.40)</td>
<td></td>
</tr>
<tr>
<td>Hochster 2009</td>
<td>-0.51</td>
<td>0.35</td>
<td>8.1%</td>
<td>0.60 (0.30 to 1.20)</td>
<td></td>
</tr>
<tr>
<td>Martinelli 2010</td>
<td>0.07</td>
<td>0.57</td>
<td>3.0%</td>
<td>1.08 (0.35 to 3.34)</td>
<td></td>
</tr>
<tr>
<td>Salles 2010</td>
<td>-0.14</td>
<td>0.27</td>
<td>13.8%</td>
<td>0.87 (0.51 to 1.48)</td>
<td></td>
</tr>
<tr>
<td>Subtotal (95% CI)</td>
<td></td>
<td></td>
<td>28.4%</td>
<td>0.86 (0.60 to 1.25)</td>
<td></td>
</tr>
<tr>
<td>Heterogeneity: $\chi^2 = 3.55, df = 4 (P = .47); I^2 = 0%$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test for overall effect: $Z = 0.78 (P = .44)$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Maintenance for relapsed or refractory lymphoma					
Forastpinner 2006	-0.72	0.5	4.0%	0.49 (0.18 to 1.30)	
Hainsworth 2005	-0.15	0.28	12.7%	0.86 (0.49 to 1.49)	
Martinelli 2010	-0.62	0.34	10.9%	0.54 (0.30 to 0.97)	
Pettengell 2010	-0.13	0.25	16.1%	0.88 (0.54 to 1.43)	
van Oers 2010	-0.36	0.19	27.9%	0.70 (0.48 to 1.01)	
Subtotal (95% CI)			71.6%	0.72 (0.57 to 0.91)	
Heterogeneity: $\chi^2 = 2.60, df = 4 (P = .63); I^2 = 0%$					
Test for overall effect: $Z = 2.80 (P = .005)$					

Any treatment line					
Wiltens-Hang 2010	No deaths occurred	No deaths occurred	Not estimable		
Subtotal (95% CI)			100.0%	0.76 (0.62 to 0.92)	
Heterogeneity: Not applicable					
Test for overall effect: Not applicable					
Total (95% CI)					
Heterogeneity: $\chi^2 = 6.85, df = 9 (P = .65); I^2 = 0%$					
Test for overall effect: $Z = 2.78 (P = .005)$					
Test for subgroup differences: $\chi^2 = 0.69, df = 1 (P = .41), I^2 = 0%$					

95% confidence intervals (CIs), unidirectional arrows represent a limit of the CI that is higher than 10, and the center of the black diamonds represent the pooled point estimate, and their horizontal axis represents the pooled 95% CI. The black diamond at the bottom represents the pooled point estimate. MR = maintenance therapy with rituximab. SE = standard error.

This study. Although a clear survival benefit of rituximab maintenance was observed only for patients with relapsed or refractory follicular lymphoma, the magnitude of progression-free survival benefit was similar after first induction as well as after two or more inductions, and was consistent in different subgroups of patients.

A limitation of repeating the meta-analysis is the increased chance of false-positive results. The reported point estimates and confidence intervals were not adjusted for repeated analyses.

The highly statistically significant progression-free survival benefit of rituximab maintenance was not translated to a statistically significant overall survival benefit after first induction treatment in patients with follicular lymphoma. This may be because a longer follow-up is required to demonstrate a statistically significant difference in survival of patients in first remission whose estimated survival is in the range of decades (1,80), as opposed to fewer years in patients in second or third remission. Alternatively, disease progression per se may not always be a clinically meaningful event, and second-line treatment may be effective in these patients. Thus, for patients with relapsed follicular lymphoma who responded to induction therapy, rituximab maintenance should be considered the standard of care. For first-line treatment options should be discussed with patients in light of the statistically significant prolongation of progression-free survival vs increased rate of infections.

References

Ghielmini M. Adding rituximab to cyclophosphamide, vincristine and prednisone increases time to treatment failure or progression in people with untreated stage III/IV follicular lymphoma. Cancer Treat Rev. 2005;31(8):644–647.

Ghielmini M, Ruifach K, Salles G, et al. Single agent rituximab in patients with follicular or mantle cell lymphoma: clinical and biological factors that are predictive of response and event-free survival as well as the effect of rituximab on the immune system: a study of the Swiss Group for Clinical Cancer
Funding
This research was supported by F. Hoffmann-La Roche Ltd, Basel (an unrestricted grant to O.S., grant number Km209450133).

Notes
The authors are solely responsible for the study design, data collection, analysis and interpretation of the data, writing the article, and decision to submit the article for publication. Roche (manufacturer of rituximab) had no involvement in any of these activities or in any part of the study conduction. Drs Dreyling, Salles, and Shpilberg received honoraria from Roche.

Affiliations of authors: Institute of Hematology, Davidoff Cancer Center, Rabin Medical Center, Petah-Tikva, Israel (LV, AG-G, OS); Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel (LV, AG-G, OS); Hospices Civils de Lyon and Université de Lyon, Pierre-Benite, France (GS); Department of Internal Medicine III, University Hospital Munich, Campus Grosshadern, Munich, Germany (MHD); Department of Medical Oncology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland (MG); Swiss Group for Clinical Cancer Research, Bern, Switzerland (SH); Department of Haematology, St. George’s University of London, London, UK (RP); Department of Hematology and Oncology, University Hospital of Heidelberg, Heidelberg, Germany (MW-H).